Rate constants from instanton theory via a microcanonical approach.
نویسندگان
چکیده
Microcanonical instanton theory offers the promise of providing rate constants for chemical reactions including quantum tunneling of atoms over the whole temperature range. We discuss different rate expressions, which require the calculation of stability parameters of the instantons. The traditional way of obtaining these stability parameters is shown to be numerically unstable in practical applications. We provide three alternative algorithms to obtain such stability parameters for non-separable systems, i.e., systems in which the vibrational modes perpendicular to the instanton path couple to movement along the path. We show the applicability of our algorithms on two molecular systems: H2 + OH → H2O + H using a fitted potential energy surface and HNCO + H → NH2CO using a potential obtained on-the-fly from density functional calculations.
منابع مشابه
Microcanonical and thermal instanton rate theory for chemical reactions at all temperatures.
Semiclassical instanton theory is used to study the quantum effects of tunnelling and delocalization in molecular systems. An analysis of the approximations involved in the method is presented based on a recent first-principles derivation of instanton rate theory [J. Chem. Phys., 2016, 144, 114106]. It is known that the standard instanton method is unable to accurately compute thermal rates nea...
متن کاملSemiclassical instanton approach to calculation of reaction rate constants in multidimensional chemical systems.
The semiclassical instanton approximation is revisited in the context of its application to the calculation of chemical reaction rate constants. An analytical expression for the quantum canonical reaction rate constants of multidimensional systems is derived for all temperatures from the deep tunneling to high-temperature regimes. The connection of the derived semiclassical instanton theory wit...
متن کاملThermal Rate Constants of the NO2 Fission Reaction of Gas Phase r-HMX: A Direct ab Initio Dynamics Study
The NO2 fission reaction of gas phase R-HMX has been studied using a direct ab initio method within the framework of microcanonical variational transition state theory (μVT). The potential energy calculations were calculated using the hybrid nonlocal B3LYP density functional theory with the cc-pVDZ basis set. The calculated results show that the potential energy of breaking the axial NO2 groups...
متن کاملComparison of quantum dynamics and quantum transition state theory estimates of the H + CH4 reaction rate.
Thermal rate constants are calculated for the H + CH(4) --> CH(3) + H(2) reaction employing the potential energy surface of Espinosa-Garcia (Espinosa-Garcia, J. J. Chem. Phys. 2002, 116, 10664). Two theoretical approaches are used. First, we employ the multiconfigurational time-dependent Hartree method combined with flux correlation functions. In this way rate constants in the range 225-400 K a...
متن کاملThe computation of electron transfer rates: The nonadiabatic instanton solution
A computational theory for determining electron transfer rate constants is formulated based on an instanton expression for the quantum rate and the self-consistent solution of the imaginary time nonadiabatic steepest descent approximation. The theory obtains the correct asymptotic behavior for the electron transfer rate constant in the nonadiabatic and adiabatic cases, and it smoothly bridges b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 146 7 شماره
صفحات -
تاریخ انتشار 2017